Categorical Data Analysis Using a Skewed Weibull Regression Model
نویسندگان
چکیده
In this paper, we present a Weibull link (skewed) model for categorical response data arising from binomial as well as multinomial model. We show that, for such types of categorical data, the most commonly used models (logit, probit and complementary log–log) can be obtained as limiting cases. We further compare the proposed model with some other asymmetrical models. The Bayesian as well as frequentist estimation procedures for binomial and multinomial data responses are presented in detail. The analysis of two datasets to show the efficiency of the proposed model is performed.
منابع مشابه
On Burr III-Inverse Weibull Distribution with COVID-19 Applications
We introduce a flexible lifetime distribution called Burr III-Inverse Weibull (BIII-IW). The new proposed distribution has well-known sub-models. The BIII-IW density function includes exponential, left-skewed, right-skewed and symmetrical shapes. The BIII-IW model’s failure rate can be monotone and non-monotone depending on the parameter values. To show the importance of the BIII-IW distributio...
متن کاملSperm Retrieval in Patients with Klinefelter Syndrome: A Skewed Regression Model Analysis
Background The most common chromosomal abnormality due to non-obstructive azoospermia (NOA) is Klinefelter syndrome (KS) which occurs in 1-1.72 out of 500-1000 male infants. The probability of retrieving sperm as the outcome could be asymmetrically different between patients with and without KS, therefore logistic regression analysis is not a well-qualified test for this type of data. This stud...
متن کاملمقایسه مدل شبکه عصبی مصنوعی و رگرسیون پارامتری در پیشبینی بقای بیماران مبتلا به سرطان معده
Background & Objective: Using parametric models is common approach in survival analysis. In the recent years, artificial neural network (ANN) models have increasingly used in survival prediction. The aim of this study was to predict of survival rate of patients with gastric cancer by using a parametric regression and ANN models and compare these methods. Methods: We used the data of 436 gast...
متن کاملStatistical models for the analysis of skewed healthcare cost data: a simulation study
Skewed data is the main issue in statistical models in healthcare costs. Data transformation is a conventional method to decrease skewness, but there are some disadvantages. Some recent studies have employed generalized linear models (GLMs) and Cox proportional hazard regression as alternative estimators. The aim of this study was to investigate how well these alternative estimators perform in ...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018